
A few ML algorithms
worth further development

Włodzisław Duch

Laboratorium Neurokognitywne,
Interdyscyplinarne Centrum Nowoczesnych Technologii UMK

Katedra Informatyki Stosowanej UMK

Google: Wlodzislaw Duch

Systemy inteligentne. teoria, praktyka, wyzwania, WMNI PW
21/11/2017

NeuroCog projects

Neurocognitive Informatics: understanding complex
cognition => creating algorithms that work in similar way.

• Computational creativity, insight, intuition, imagery.

• Imagery agnosia, amusia, musical talent.

• Neurocognitive approach to language, word games.

• Brain stem models & consciousness in artificial systems.

• Medical information retrieval, analysis, visualization.

• Comprehensive theory of autism, ADHD, phenomics, education.

• Understanding neurodynamics, EEG signals, neurofeedback.

• Geometric theory of brain-mind processes.

• Infants: observation, perception/WM development.

• Neural determinism, free will & social consequences.

My group of neuro-cog-fanatics

In search of the sources
of brain's cognitive activity

Project „Symfonia”, NCN, Kraków, 18 July 2016

Computational QM

Graphical representation of model spaces. Vol. I Basics.
Springer Verlag, Berlin Lecture Notes in Chemistry
Vol. 42 (1986); Vol. II has never been written …

Idea:

Differential equations, such as Schrodinger equations in quantum mechanics
are approximated by algebraic equations defined in tensor spaces with proper
symmetry.

In finite dimensional N-particle Hilbert spaces eigenfunctions  become
linear combinations a large number of basis functions:

   1 2 1 2
ˆ , ,N NH x x x E x x x E    HC C

   1 2 1 2, ,N I I N

I

x x x C x x x  
SGGA, Symmetric Group Graphical Approach; Lie algebra, Graphs.

Analyze graph to solve HC=EC

Discovering the wheel

1990-95 - before the Internet and repositories of papers …

RBF discovery:
Broomhead & Lowe (1988), Multivariable functional interpolation
and adaptive networks. Complex Systems 2: 321–355.

Duch W (1994) Floating Gaussian Mapping: a new model of
adaptive systems. Neural Network World 4:645-654

MDS: Torgerson (1958), Sammon 1969.

Duch W (1995) Quantitative measures for the self-organized
topographical mapping. Open Systems and Information Dynamics
2:295-302 (a set of 3rd order equation instead of minimization).

Discovering the wheel - reverse
Although we have Internet some people have yet to rediscover my ideas …

• Duch W (1996) Computational physics of the mind. Computer Physics
Communication 97: 136-15

• Perlovsky, L. I. (2016). Physics of the Mind. Frontiers in Systems
Neuroscience, 10. fnsys.2016.00084

o Duch W, Diercksen GHF (1995) Feature Space Mapping as a universal
adaptive system. Computer Physics Comm. 87: 341-371

o Perlovsky LI. Neural networks and intellect: Using model based concepts.
New York: Oxford University Press; 2001.

Same with meta-learning, prototype-based learning, transfer functions,
creativity and intuition, and a few other ideas.

• Cognitive informatics: HITs, DREAMs & Perfect Babies. A*STAR Cognitive
Science Symposium, Singapore, September 26, 2005

• Duch W (2007), Intuition, Insight, Imagination and Creativity. IEEE
Computational Intelligence Magazine 2(3), 40-52

Department of Informatics
in 2008

CI Projects

Google W. Duch => List of projects, talks, papers

Computational intelligence (CI), main themes:

• Understanding of data: visualization, prototype-based rules.

• Foundations of computational intelligence: transformation based
learning, k-separability, learning hard boole’an problems.

• Novel learning: projection pursuit networks, QPC (Quality of
Projected Clusters), search-based neural training, transfer learning or
learning from others (ULM), aRPM, SFM ...

• Similarity based framework for metalearning, heterogeneous
systems, new transfer functions for neural networks.

• Feature selection, extraction, creation of enhanced spaces.

• General meta-learning, or learning how to learn, deep learning.

CI topics

1. Understanding NN functions

– Visualization of network functions

– Feature Space Mapping (FSM)

– Prototype-rules (P-rules) and Fuzzy rules (F-rules)

2. NN learning algorithms

– Support Vector Neural Training (SVNT)

– Almost Random Projection Method (aRPM)

3. Foundations of CI

– K-representability and complex logic

– Quality of Projected Clusters (QPC)

– Transformation-based learning, heterogeneous systems

– Support Feature Machines (SFM) and Universal Learning Machines (ULM)

4. Meta-learning

– Framework for Similarity-Based Learning (SBM)

– Real Meta-Learning

Understanding NN functions

Visualization of NN mappings

Problem: NN are black boxes, dangerous to use. Can we trust NN solutions?

Partial solution: visualize error surfaces;
visualize activity of hidden/output neurons on known data+add some noise to
investigate stability of NN mapping, convergence, compare different solutions,
effects of regularization, type of functions/networks.

Visualization of multi-dimensional trajectories in weight space on error surfaces.

• Kordos, M., & Duch, W. (2005). A survey of factors influencing MLP error
surface. Control and Cybernetics 33(4), 611–631.

Hidden secrets of neural networks. ICAISC Zakopane, Poland, June 2004

• Duch W, Visualization of hidden node activity in neural networks:
I & II. Visualization methods. LN in AI 3070 (2004) 38-43; 44-49

• Duch W, Internal representations of multi-layered perceptrons.
Issues in Intelligent Systems: Paradigms. 2005, pp. 49-62.

Trajectories of MLP weights

Take weights Wi from iterations i=1..K; do PCA on Wi covariance matrix.
Captures 95-97% variance of the training data with just two vectors. Error
functions in 2D PCA shows realistic learning trajectories!

No local minima found. Many large flat plains and valleys.
Many initializations followed by short runs will find good solution.

Data far from decision borders has almost no influence, the main reduction of
MSE is achieved by increasing ||W||, sharpening sigmoidal functions.

M. Kordos
& W. Duch
(2005)

Dynamics of learning

Output images of the training data vectors mapped by NN:

• Left: hypothyroid with 3 neurons the network will always under-fit
the data, unable to separate small classes.

• Right: even if 6 hidden neurons are used problems with convergence
may arise in some runs, but in other runs it may work.

• Stop further learning, start from another initialization.

Promising convergence

SCG training, network structure 21-8-3.
Output vectors displayed. Ideal results: (1,0,0), or (0,1,0) or (0,0,1).

Two runs, intermediate solutions after 100 iterations,
 left 164 right 197 errors.

Converged ...

Two very good converged solutions after 19 K and 22 K iterations,
SCG training, 21-8-3, both cases 1 error, ~ same MSE.

Left: green–blue potential mixing; right: blue–red classes mixing.
Networks are over-confident and not stable, weights are very large,
sigmoids are step-like, decision borders are very sharp,
most training vectors are mapped to a single point, output is (1,0,0) etc.
New data near decision boundaries may fall on a wrong side.

Adding regularization

Regularization expands output clusters, but solution is more smooth
and stable; below a=0.01 regularization is used.

Left: solution with 12 hidden neurons, 2 errors;
Right: small variance (0.001) noise perturbation, 5 additional vectors
per one training vector added => many errors appear.
Still regularization is too small.

MLP/RBF Wine solution

Wine data, 8-2-3 MLP and 8-6-3 RBF networks.
Perfect solutions may be dangerous! Add some noise to inputs to
check for overfitting and see classification margins.

RBF always provides soft decision borders, not 0-1 outputs, but still
separable clusters, more stable when small perturbations are added.

What is inside?

Many types of internal representations may look identical

from outside, but generalization may depend on them.

• Classify different types of internal representations.

• Take permutational invariance into account: equivalent internal
representations may be obtained by re-numbering hidden nodes.

• Good internal representations should form compact clusters in
the internal space.

• Check if the representations form separable clusters.

• Discover poor representations and stop training.

• Analyze adaptive capacity of networks.

•

Wine: hidden 2D

Many solutions in 2D hidden space: which is the best?
Add noise to input data to see how stable the solution is.
Here each X => 10 points X+Gaussian noise with 0.05 variance.

Analysis n higher dimensions done using parallel coordinates,
projections to polyhedra, FSD, SNE and other techniques.

Hi-D trajectories

140 active units (dyslexia model in Emergent neural simulator);
noisy attractor dynamics, FSD and SNE trajectories with 500 points.

Thanks to K. Dobosz Viser toolbox, and M. Orliński SNE implementation.

http://fizyka.umk.pl/~kdobosz/visertoolbox/
http://fizyka.umk.pl/~kdobosz/visertoolbox/
http://fizyka.umk.pl/~kdobosz/visertoolbox/

What feedforward NN really do?

Vector mappings from the input space to hidden space(s), and finally
to the output space where data should be separable.

Hidden-Output mapping done usually by perceptrons.

A single hidden layer case is analyzed below.

T = {Xi} training data, N-dimensional.

H = {hj(X
i)} T image in the hidden space, j =1 .. NH-dim.

Y = {yk{h(Xi)} T image in the output space, k =1 .. NC-dim.

NN goal: scatterograms of H, the image of T in the hidden space

should be linearly separable; internal representations will determine
network generalization capabilities and other properties.

Is this a good goal? Can it be easily achieved?
“Universal approximator” theorem is not helpful.

Linear separability

 SVM visualization of Leukemia microarray data,

Horizontal axis x=WX, vertical - orthogonal projection.

Approximate separability

SVM visualization of Heart dataset, overlapping clusters, information in the
data is insufficient for perfect classification.

Rules

QPC visualization of Monks dataset with simple logical structure,
two logical rules are needed, or combination of two projections.

Complex distribution

QPC visualization of concentric rings in 2D with strong noise in remaining 2D;
transform: nearest neighbor solutions, combinations of ellipsoidal densities.

Interval transformation

 8-bit parity data: 9-separability is much easier to achieve than full linear
separability; almost impossible to train MLP on such data.

Much more complex logic …

Different activations => same cognitive functions in different context?
Complex logic may be needed to learn from this type of data.

Mattar, M. G., Cole, M. W., Thompson-Schill, S. L., & Bassett, D. S. (2015).
A Functional Cartography of Cognitive Systems.
PLOS Computational Biology, 11(12), e1004533.

Rules from MLPs

Why is it difficult?

Multi-layer perceptron (MLP) networks: stack many perceptron units,
performing threshold logic:
M-of-N rule: IF (M conditions of N are true) THEN ...

Problem: for N inputs number of subsets is 2N.
Exponentially growing number of possible conjunctive rules.

MLP2LN

Converts MLP neural networks into a network performing logical
operations (LN).

Input

layer

Aggregation:
better features

Output: one
node per
class.

Rule units:
threshold logic

Linguistic units:
windows, filters

FSM - neurofuzzy systems

Feature Space Mapping (FSM) constructive neurofuzzy
system. Neural adaptation, estimation of probability
density distribution (PDF) using single hidden layer
network (RBF-like), with nodes realizing separable basis
functions (SBF networks):

   
1

; i ij ij ij

i j

FSM X P W G X P


  

 ; i i i

i

RBF X P W X P 

Model of mental processes–FSM nodes representing attractors, mental events.

Duch W, Diercksen GHF (1995) Feature Space Mapping as a universal adaptive
system. Computer Physics Communications 87: 341-371

Duch W (1997) Platonic model of mind as an approximation to neurodynamics.
In: Brain-like computing and intelligent information systems, ed. S-i. Amari, N.
Kasabov (Springer, Singapore 1997), chap. 20

Prototype-based rules

IF P = arg minR D(X,R) THAN Class(X)=Class(P)

C-rules (Crisp), are a special case of F-rules (fuzzy rules).

F-rules (fuzzy rules) are a special case of P-rules (Prototype)!

P-rules have the form:

D(X,R) = dissimilarity (distance) function, determining local decision borders.

P-rules are easy to interpret and offer better description than F-rules!

IF X=You are most similar to the P=Superman
THAN You are in the Super-league.

“Similar” may involve different features or D(X,P). What is similar for the brain?
Kernel features in SVM are particular example of similarity functions.

• Duch W, Setiono R, Zurada J.M, Computational intelligence methods for
understanding of data. Proc. of the IEEE 92(5) (2004) 771- 805

• Duch W, Adamczak R, Grąbczewski K, A new methodology of extraction, optimization
and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks
12 (2001) 277-306

P-rules

Euclidean distance leads to a Gaussian fuzzy membership functions + product
as T-norm. In this case FSM = RBF.

Manhattan function => m(X;P)=exp{|X-P|}

Various distance functions lead to different MF.
Ex. data-dependent probabilistic distance functions for symbolic data:

     

   
 

   
2

2

,
,

, ,

,
i i

i i ii

i i i i i

i i

d X P
D W X P

P i i i

i i

D d X P W X P

e e e X Pm m


  

  


   

 

 
X P

X P

X

     

     

, | |

, | |

VDM j i j i

i j

PDF i j j i

i j

D p C X p C Y

D p X C p C Y

 
  

 

 
  

 

 

 

X Y

X Y

Promoters with p-distances
DNA strings, 57 aminoacids, 53 + and 53 - samples

tactagcaatacgcttgcgttcggtggttaagtatgtataatgcgcgggcttgtcgt

Euclidean distance, symbolic
s =a, c, t, g replaced by x=1, 2, 3, 4

PDF distance, symbolic
s=a, c, t, g replaced by p(s|+)

P-rules and C-rules

New distance functions from info theory => interesting MF.

MF => new distance function, with local similarity D(X,R) for each cluster.

Crisp logic rules: use Chebyshev distance (L norm):

DCh(X,P) = ||XP|| = maxi Wi |XiPi|

DCh(X,P) = const => rectangular contours.

Chebyshev distance with thresholds P

 IF DCh(X,P)  P THEN C(X)=C(P)

is equivalent to a conjunctive crisp rule

IF X1[P1P/W1,P1+P/W1] …XN [PN P/WN,PN+P/WN]

THEN C(X)=C(P)

P-rules and intuitive thinking

Learning from partial observations:

Ohm’s law V=I×R; Kirhoff’s V=V1+V2.

Geometric representation of qualitative facts:

+ increasing, 0 constant, - decreasing.

True (I-,V-,R0), (I+,V+,R0), false (I+,V-,R0).

5 laws: 3 Ohm’s 2 Kirhoff’s laws.

All laws A=B+C, A=B×C , A-1=B-1+C-1, have
identical geometric interpretation!

13 true, 14 false facts; simple P-space, but
complex neurodynamics.

Question in qualitative physics (PDP book):
if R2 increases, R1 and Vt are constant, what will
happen with current and V1, V2 ?

Decision borders

Euclidean distance from 3
prototypes, one per class.

Minkovski a=20 distance from 3
prototypes.

D(P,X)=const and decision borders D(P,X)=D(Q,X).

NN learning algorithms

Support Vectors

SVM gradually focuses on the training vectors near the decision
hyperplane – can we do the same with MLP?

Selecting Support Vectors

Active learning: if contribution to the parameter change is negligible
remove the vector from training set.

If the difference

is sufficiently small the pattern X will have negligible influence on the
training process and may be removed from the training.

Conclusion: select vectors with eW(X)>emin, for training.

2 problems: possible oscillations, and strong influence of outliers.

Solution: adjust emin dynamically to avoid oscillations;
 remove also vectors with eW(X) > 1emin = emax

 
  

 2

1

;
= ;

K
k

ij k k

kij ij

E M
W Y M

W W
 



 
    

 


W X W
X W

    min

1

;
K

k k

k

Y Me  e


  W X X W

SVNT algorithm (2005)

Initialize the network parameters W,
 set e=0.01, emin=0, set SV=T.

Until no improvement is found in the last Nlast iterations do

• Optimize network parameters for Nopt steps on SV data.

• Run feedforward step on T to determine overall accuracy and
errors, take SV={X|e(X) [emin,1emin]}.

• If the accuracy increases:

 compare current network with the previous best one,
 choose the better one as the current best

• increase emin=emin+e and make forward step selecting SVs

• If the number of support vectors |SV| increases:

 decrease eminemine;

 decrease e = e/1.2 to avoid large changes

XOR solution

Hypothyroid data example

2 years real medical screening tests for thyroid diseases, 3772 cases with 93
primary hypothyroid and 191 compensated hypothyroid, the remaining 3488
cases are healthy; 3428 test, similar class distribution.

21 attributes (15 binary, 6 continuous), but only 2 binary attributes (on
thyroxine, and thyroid surgery) are useful, therefore 8 attributes are used.

Method % train % test

C-MLP2LN rules 99.89 99.36

MLP+SCG, 4 neurons 99.81 99.24

SVM Minkovsky opt kernel 100.0 99.18

MLP+SCG, 4 neur, 67 SV 99.95 99.0

MLP+SCG, 12 neur. 100.0 98.8

Cascade correlation 100.0 98.5

MLP+backprop 99.60 98.5

SVM Gaussian kernel 99.76 98.4

Biological inspirations
Cortical columns may learn to respond to stimuli
with complex logic, resonating in different way.

Liquid state machine (LSM; Maas, Markram 2004)
– large spiking recurrent neural network,
randomly connected.

S(t) => LSM (x,t), spatio-temporal pattern of
activations, creating separable high dimensional
projections, perceptrons can handle that.

Simplifications for static data:

1) Oscillators based on combination of two neurons s(W.X-b) – s(W.X-b’)
give localized projections  specific resonant states!
Used in MLP2LN architecture for extraction of logical rules from data.

2) Single hidden layer constructive network based on random projections.

aRPM

aRMP, Almost Random Projection Machine (with Hebbian learning):

generate random combinations of inputs (line projection) z(X)=W.X,

find and isolate pure cluster h(X)=G(z(X)); localized kernel on projections,
estimate relevance of h(X), ex. MI(h(X),C),
leave only good nodes and continue until each vector activates minimum k
hidden nodes.

Count how many nodes vote for each class and plot: no LDA needed!
No need for learning at all!

Main idea
Following biological inspirations - aRPM, single hidden layer constructive
network based on random projections added only if useful;

easily solve highly-non-separable problems.

Kernel-based features extend the hypothesis space.
Cover theorem guarantees better separability.

Linear kernels define new features t(X;W)=KL(X,W)=X·W based on a
projection on the W direction.

Gaussian kernels g(X,W)=exp(-||X-W||/(2σ2)) evaluate similarity between
two vectors using weighted radial distance function.

The final discriminant function is constructed as a linear combination of
such kernels.

Focus on margin maximization in aRPM; new projections added only if
they increase correct classification probability of those examples that are
wrongly classified or are close to the decision border.

aRPM

Some projections may not be very useful, but the distribution of the
training data along direction may have a range of values that includes a
pure cluster of projected patterns.
This creates binary features bi(X) = t(X;Wi,[ta,tb]) ϵ {0,1}, based on linear
restricted projection in the direction W.

Good candidate feature should cover some minimal number η of training
vectors.

Features based on kernels - here only Gaussian kernels with several values
of dispersion σ g(X;Xi,σ)=exp(-||Xi-X||2/2σ2).

Local kernel features have values close to zero except around their
support vectors Xi.

Their usefulness is limited to the neighborhood O(Xi) in which gi(X)>ϵ.

aRPM with margin optimization

In the WTA |A(C|X)-A(¬C|X)| estimates distance from the decision border.

Specifying confidence of the model for vector XϵC using logistic function:

F(X)=1/(1+exp(-(A(C|X)-A(¬C|X))))

gives values around 1 if X is on the correct side and far from the border,
and goes to zero if it is on the wrong side.

Total confidence in the model may then be estimated by summing over all
vectors.

 The final effect of adding new feature h(X) to the total confidence measure is
therefore:

U(H,h)=Σ (F(X;H+h) - F(X;H))

If U(H,h)>α than the new feature is accepted providing a larger margin.

To make final decision aRPM with margin maximization uses WTA mechanism
or LD.

Heart Statlog data

no margin
maximization

with margin
maximization

Axes: number of voting nodes
for each vector; color = class

More vectors activate
many nodes from correct
class, few vectors are
close to the decision
border (majority voting).

no margin maximization with margin maximization

Wine data, 3 classes, pairwise

Datasets

aRMP results

Simplest method that solves highly-non separable problems like parity!

aRPM with locally optimized kernels

To create multi-resolution kernel features – first with large σ (smooth
decision borders), then smaller σ (features more localized).

The candidate feature is converted into a permanent node only if it
increases classification margin.

Incremental algorithm, expand feature space until no improvements;
move vectors away from decision border.

WTA - sum of the activation of hidden nodes. Projections with added
intervals give binary activations bi(X), but the values of kernel features
g(X;Xi,σ) are summed, giving a total activation A(C|X) for each class.

Plotting A(C|X) versus A(¬C|X) for each vector leads to scatterograms,
giving an idea how far is a given vector from the decision border.

aRMP with
LOK results,

simplest
version

aRMP conclusions
aRPM has many advantages that has not been yet explored.
Some work on ELM (Extreme Learning Machines) goes in this direction.

• Biological plausibility – virtually no learning involved, just generation
and selection of features.

• Solves fast learning problem. Focus on generation of new features
followed by the WTA, simpler and faster than typical NN networks.

• Selection of network nodes to ensure wide margins.

• Adding kernel features, locally optimized, relations to kernel SVM

• Feature selection and construction, finding interesting views on the
data is the basis of natural categorization and learning processes.

• Scatterograms of WTA output show effects of margin optimization, and
allow for estimation of confidence in classification of a given data.

Further improvements: admission of impure clusters instead of binary
features, use of other kernel features, locally optimized kernels, selection
of candidate SV, optimization of the algorithm.

Foundations of Machine Learning

Principles: information compression
Neural information processing in perception and cognition:
information compression, or algorithmic complexity.
In computing: minimum length (message, description) encoding.

Wolff (2006): all cognition and computation is information compression!
Analysis and production of natural language, fuzzy pattern recognition,
probabilistic reasoning and unsupervised inductive learning.

Talks about multiple alignment, unification and search, but only models for
sequential data and 1D alignment have been demonstrated.

Information compression: encoding new information in terms of old.

Measure of syntactic and semantic information (Duch,
Jankowski 1994); based on the size of the minimal graph
representing a given data structure or knowledge-base
specification, thus it goes beyond alignment;
real information = what model cannot predict.
“Surprise” and curiosity measures: Pfaffelhuber (1972),
Palm, Schmidhuber, Baldi … all based on the same idea.

What can be learned?

Linearly separable or almost separable problems are relatively simple –
deform planes or add dimensions to make data separable.

How to define “slightly non-separable”, or relatively easy to learn?
Now we have only separable problems and one vast realm of the rest.

Easy problems

• Approximately linearly separable problems in the
original feature space: linear discrimination is
sufficient (always worth trying, but no-one does!).

• Simple topological deformation of decision borders
is sufficient – linear separation is then possible in
extended/transformed spaces.

This is frequently sufficient for pattern recognition
problems (more than half of UCI problems).

• RBF/MLP networks with one hidden layer also solve such problems easily,
but convergence/generalization for anything more complex than XOR is
problematic.

SVM adds new features to “flatten” the decision border:

   ()

1 2(, ,...); ,i

n ix x x z K X X X X

achieving larger margins/separability in the X+Z space.

Neurons learning complex logic

Boole’an functions are difficult to learn, n bits but 2n nodes =>
combinatorial complexity; similarity is not useful, for parity all neighbors
are from the wrong class. MLP networks have difficulty to learn functions
that are highly non-separable.

Projection on W=(111 ... 111) gives clusters with 0, 1, 2 ... n bits;

solution requires abstract imagination + easy categorization.

Ex. of 2-4D
parity
problems.

Neural logic
can solve it
without
counting;
find a good
point of view.

Easy and difficult problems

Linear separation: good goal if simple topological
deformation of decision borders is sufficient.
RBF/MLP networks with one hidden layer solve such problems.

Difficult problems: disjoint clusters, combinatorial problems, complex logic.
Networks with localized functions need exponentially large number of nodes.

Q1: How to characterize complexity of Boolean functions? Non-separability is
not sufficient.
Q2: What is the simplest model for a given type of data?
Q3: How to learn such model in an automatic way?

Boolean functions: n=2 vectors V={00,01,10,11},
Boolean functions {0000, 0001 ... 1111}, ex. 0001 = AND, 0110 = OR,
each function is identified by number from 0 to 15 = 2K-1.

For n bits there are K=2n binary vectors that can be represented as vertices of
n-dimensional hypercube.
Each Boolean function is identified by K bits.
BoolF(Bi) = 0 or 1 for i=1..K, leads to the 2K Boolean functions.

Boolean functions

n=2, 16 functions, 12 separable, 4 not separable.

n=3, 256 f, 104 separable (41%), 152 not separable.

n=4, 64K=65536, only 1880 separable (3%)

n=5, 4G, but << 1% separable ... bad news!

Most bioinformatics or neuroimaging data may require n >100.

Existing methods may learn some non-separable functions,
but most functions cannot be learned !

Example: n-bit parity problem; many papers in top journals.
No off-the-shelf systems are able to solve such problems.

For all parity problems SVM is below base rate!
Such problems are solved only by special neural architectures or special
classifiers – if the type of function is known.

But parity is still trivial ... solved by

1

cos
n

i

i

y b


 
  

 


Goal of learning

If simple topological deformation of decision borders is sufficient linear
separation is achieved in high dimensional spaces, “flattening” non-
linear decision borders; this is frequently the case in pattern recognition
problems. RBF/MLP networks with one hidden layer solve the problem.

For complex logic this is not sufficient; networks with localized functions need
exponentially large number of nodes.

Such situations arise in AI reasoning problems, real perception, object
recognition, text analysis, bioinformatics ...

Linear separation is too difficult, set an easier goal.
Linear separation: projection on 2 half-lines in the kernel space:
line y=WX, with y<0 for class – and y>0 for class +.

Simplest extension: separation into k-intervals, or k-separability.
For parity: find direction W with minimum # of intervals, y=W.X

k-sep learning
Try to find lowest k with good solution:

• Assume k=2 (linear separability), try to find a good solution;
 MSE error criterion
•

• if k=2 is not sufficient, try k=3; two possibilities are C+,C,C+ and

C, C+, C this requires only one interval for the middle class;
• if k<4 is not sufficient, try k=4; two possibilities are C+, C, C+, C and C,

C+, C, C+ this requires one closed and one open interval.

Network solution  to minimization of specific cost function.

           

   

2

1 2 1

2

, , ; 1 ;

;

E y C C y

C y

  



  + 



 


X X

X

W X W X X X W

X X W

First term = MSE, second penalty for “impure” clusters, third term = reward for
the large clusters.

      
2

, ;E y C  
X

W X W X

3D case

3-bit functions: X=[b1b2b3], from [0,0,0] to [1,1,1]

f(b1,b2,b3) and f(b1,b2,b3) are symmetric (color change)

8 cube vertices, 28=256 Boolean functions.

0 to 8 red vertices: 1, 8, 28, 56, 70, 56, 28, 8, 1 functions.

For optimized direction W on all 28 functions index projection W.X gives:

k=1 in 2 cases, all 8 vectors in 1 cluster (all 8 black or all 8 white)

k=2 in 14 cases, 8 vectors in 2 clusters (linearly separable)

k=3 in 42 cases, clusters E O E or O E O Even, Odd

k=4 in 70 cases, clusters E O E O or O E O E

Symmetrically, k=5-8 for 70, 42, 14, 2 cases.

Most logical functions have 4 or 5-separable projections.

Learning = find best set of projections for each function.

Enforcing separability on k-separable data is hard for k>2, but assuming
k-separability as a goal makes learning easier.

4D case

4-bit functions: X=[b1b2b3b4], from [0,0,0,0] to [1,1,1,1]

16 cube vertices, 216=65636=64K functions.

Random initialization of a single perceptron has 39.2% chance of creating 8
or 9 clusters for the 4-bit data.

Learning optimal directions W finds:

k=1 in 2 cases, all 16 vectors in 1 cluster (all black or all white)

k=2 in 2.9% cases (or 1880), 16 vectors in 2 clusters (linearly sep)

k=3 in 22% of all cases, clusters B R B or W R W

k=4 in 45% of all cases, clusters R W R W or W R W R

k=5 in 29% of all cases.

Hypothesis: for n-bits highest k=n+1 ?

For 5-bits there are 32 vertices and already 232=4G=4.3.109 functions.

Most are 5-separable, less than 1% is linearly separable!

Network solution

Can one learn a simplest model for highly complex logical functions?

2-separable (linearly separable) problems are easy;
non separable problems may be broken into k-separable, k>2.

Blue: sigmoidal neurons
with threshold, brown –
linear neurons.

X1

X2

X3

X4

y=W.X
+

1



1

+

1



1

s(by+1)

s(by+2)

+

1

+

1 +

1 +

1

s(by+4)

Neural architecture for
k=4 intervals, or
4-separable problems.

k-separability

Can one learn all Boolean functions?

Problems may be classified as 2-separable (linear separability);
non separable problems may be broken into k-separable, k>2.

Blue: sigmoidal neurons
with threshold, brown –
linear neurons.

X1

X2

X3

X4

y=W.X
+

1



1

+

1



1

s(by+1)

s(by+2)

+

1

+

1 +

1 +

1

s(by+4)

Neural architecture for
k=4 intervals, or
4-separable problems.

QPC, Projection Pursuit

What is needed to learn data with complex logic?

• cluster non-local areas in the X space, use W.X

• capture local clusters after transformation, use G(W.X-)

SVMs fail because the number of directions W that should be

considered grows exponentially with the size of the problem n.

What will solve it? Projected clusters!

1. A class of constructive neural network solution with G(W.X-) functions
combining non-local/local projections, with special training algorithms.

2. Maximize the leave-one-out error after projection: take some localized
function G, count in a soft way cases from the same class as Xk.

Grouping and separation; projection may be done directly to 1 or 2D for
visualization, or higher D for dimensionality reduction, if W has d columns.

       
k k

k k

C C

Q A G A G+ 

 

 
      

 
  

X X X

W W X X W X X

Parity n=9

Simple gradient learning; QPC index shown below.

Learning hard functions

Training almost perfect for parity, with linear growth in the number of
vectors for k-sep. solution created by the constructive neural algorithm.

Real data

 On simple data results are similar as from SVM (because they are almost
optimal), but c3sep models are much simpler although only 3-sep. assumed.

Frameworks for Machine Learning

Similarity-based framework

Search for good models requires a frameworks to build and evaluate them.
p(Ci|X;M) posterior classification probability or y(X;M) approximators,
models M are parameterized in increasingly sophisticated way.
Similarity-Based Learning (SBL) or S-B Methods provide such framework.

(Dis)similarity:
• more general than feature-based description,
• no need for vector spaces (structured objects),
• more general than fuzzy approach (F-rules are reduced to P-rules),
• includes nearest neighbor algorithms, MLPs, RBFs, separable function

networks, SVMs, kernel methods, specialized kernels, and many others!

A systematic search (greedy, beam), or evolutionary search in the space of all
SBL models is used to select optimal combination of parameters & procedures,
opening different types of optimization channels,
trying to discover appropriate bias for a given problem.

Result: several candidate models are created, already first very limited version
gave best results in 7 out of 12 Stalog problems.

SBM framework components

• Pre-processing: objects O => features X, or (diss)similarities D(O,O’).
• Calculation of similarity between features d(xi,yi) and objects D(X,Y).
• Reference (or prototype) vector R selection/creation/optimization.
• Weighted influence of reference vectors G(D(Ri,X)), i=1..k.
• Functions/procedures to estimate p(C|X;M) or approximator y(X;M).
• Cost functions E[DT;M], various model selection/validation procedures.
• Optimization procedures for the whole model Ma.
• Search control procedures to create more complex models Ma+1.
• Creation of ensembles of (global, local, competent) models.

• M={X(O), d(.,.), D(.,.), k, G(D), {R}, {pi(R)}, E[.], K(.), S(.,.)}, where:
• S(Ci,Cj) is a matrix evaluating similarity of the classes;

a vector of observed probabilities pi(X) instead of hard labels.

The kNN model p(Ci|X;kNN) = p(Ci|X;k,D(.),{DT});
the RBF model: p(Ci|X;RBF) = p(Ci|X;D(.),G(D),{R}),
MLP, SVM and many other models may all be “re-discovered” as a part of SBL.

Meta-learning in SBL scheme

Start from kNN, k=1, all data & features, Euclidean distance, end with a new
model based on novel combination of procedures and parameterizations.

k-NN 67.5/76.6%

+d(x,y);

Canberra 89.9/90.7 %

+ si=(0,0,1,0,1,1);

71.6/64.4 %

+selection,

 67.5/76.6 %

+k opt; 67.5/76.6 %

+d(x,y) + si=(1,0,1,0.6,0.9,1);

Canberra 74.6/72.9 %
+d(x,y) + selection;

Canberra 89.9/90.7 %

k-NN 67.5/76.6%

+d(x,y);

Canberra 89.9/90.7 %

+ si=(0,0,1,0,1,1);

71.6/64.4 %

+selection,

 67.5/76.6 %

+k opt; 67.5/76.6 %

+d(x,y) + si=(1,0,1,0.6,0.9,1);

Canberra 74.6/72.9 %
+d(x,y) + sel. or opt k;

Canberra 89.9/90.7 %

k-NN 67.5/76.6%

+d(x,y);

Canberra 89.9/90.7 %

+ si=(0,0,1,0,1,1);

71.6/64.4 %

+ranking,

 67.5/76.6 %

+k opt; 67.5/76.6 %

+d(x,y) + si=(1,0,1,0.6,0.9,1);

Canberra 74.6/72.9 %
+d(x,y) + selection;

Canberra 89.9/90.7 %

Meta-learning in SBL scheme

SBL program with many options developed by Karol Grudziński.

k-NN 67.5/76.6%

+d(x,y);

Canberra 89.9/90.7%

+ si=(0,0,1,0,1,1);

 71.6/64.4 %

+selection,

 67.5/76.6 %

+k opt; 67.5/76.6%

+d(x,y) + si=(1,0,1,0.6,0.9,1);

Canberra 74.6/72.9 %
+d(x,y) + selection;

Canberra 89.9/90.7 %

Kernels = similarity functions

Gaussian kernels in SVM: zi (X)=G(X;XI ,s) radial features, X=>Z
Gaussian mixtures are close to optimal Bayesian errors. Solution requires
continuous deformation of decision borders and is therefore rather easy.

Support Feature Machines (SFM): construct features based on projections,
restricted linear combinations, kernel features, use feature selection.

Gaussian kernel, C=1.
In the kernel space Z decision borders are flat,
but in the X space highly non-linear!

SVM is based on quadratic solver, without
explicit features, but using Z features explicitly
has some advantages:
Multiresolution (Locally Optimized Kernels):
different s for different support features,
or using several kernels zi (X)=K(X;XI ,s).
Use linear solvers, neural network, Naïve
Bayes, or any other algorithm, all work fine.

Transformation-based framework

Find simplest model that is suitable for a given data, creating non-sep. that is
easy to handle: simpler models generalize better, interpretation.

Compose transformations (neural layers), for example:

• Matching pursuit network for signal decomposition, QPC index.

• PCA network, with each node computing principal component.

• LDA nets, each node computes LDA direction (including FDA).

• ICA network, nodes computing independent components.

• KL, or Kullback-Leibler network with orthogonal or non-orthogonal
 components; max. of mutual information is a special case.

• c2 and other statistical tests for dependency to aggregate features.

• Factor analysis network, computing common and unique factors.

Evolving Transformation Systems (Goldfarb 1990-2008), giving unified
paradigm for inductive learning, structural processes as representations.

Heterogeneous systems

Next step: use components from different models.
Problems requiring different scales (multiresolution).

2-class problems, two situations:

C1 inside the sphere, C2 outside.
 MLP: at least N+1 hyperplanes, O(N2) parameters.
 RBF: 1 Gaussian, O(N) parameters.
C1 in the corner defined by (1,1 ... 1) hyperplane, C2 outside.
 MLP: 1 hyperplane, O(N) parameters.
 RBF: many Gaussians, O(N2) parameters, poor approx.
Combination: needs both hyperplane and hypersphere!

Logical rule: IF x1>0 & x2>0 THEN C1 Else C2

is not represented properly neither by MLP nor RBF!

Different types of functions in one model, first step beyond inspirations from
single neurons => heterogeneous models are inspired by neural minicolumns,
more complex information processing.

Heterogeneous everything

Homogenous systems: one type of “building blocks”, same type of
decision borders, ex: neural networks, SVMs, decision trees, kNNs

Committees combine many models together, but lead to complex
models that are difficult to understand.

Ockham razor: simpler systems are better.
Discovering simplest class structures, inductive bias of the data,
requires Heterogeneous Adaptive Systems (HAS).

HAS examples:
NN with different types of neuron transfer functions.
k-NN with different distance functions for each prototype.
Decision Trees with different types of test criteria.

1. Start from large network, use regularization to prune.
2. Construct network adding nodes selected from a candidate pool.
3. Use very flexible functions, force them to specialize.

Taxonomy of NN activation functions

Duch W, Jankowski N (1999) Survey of neural transfer functions,

Neural Computing Surveys 2: 163-213, now ~300 citations and growing.

Taxonomy of NN output functions

Perceptron: implements logical rule x> for x with Gaussian uncertainty.

Taxonomy - TF

HAS decision trees
Decision trees select the best feature/threshold value for univariate and
multivariate trees:

Decision borders: hyperplanes.

Introducing tests based on La Minkovsky metric.

  or ; ,i k k i i k

i

X T W X    X W

Such DT use radial kernel features!

For L2 spherical decision border are produced.

For L∞ rectangular border are produced.

For large databases first clusterize data to get candidate references R.

 
1/

; , R i i R

i

T X R
a

a
     X R X R

SSV HAS DT example

SSV HAS tree in GhostMiner 3.0, Wisconsin breast cancer (UCI)
699 cases, 9 features (cell parameters, 1..10)
Classes: benign 458 (65.5%) & malignant 241 (34.5%).

Single rule gives simplest known description of this data:

IF ||X-R303|| < 20.27 then malignant

 else benign coming most often in 10xCV

Accuracy = 97.4%, good prototype for malignant case!

Gives simple thresholds, that’s what MDs like the most!

Best 10CV around 97.5±1.8% (Naïve Bayes + kernel, or opt. SVM)

SSV without distances: 96.4±2.1%

C 4.5 gives 94.7±2.0%

Several simple rules of similar accuracy but different specificity or sensitivity
may be created using HAS DT.
Need to select or weight features and select good prototypes.

Support Feature Machines

General principle: complementarity of information processed by parallel
interacting streams with hierarchical organization (Grossberg, 2000).

Cortical minicolumns provide various features for higher processes.

Create information that is easily used by various ML algorithms: explicitly
build enhanced space adding more transformations.

• X , original features
• Z=WX, random linear projections, other projections (PCA< ICA, PP)
• Q = optimized Z using Quality of Projected Clusters or other PP techniques.
• H=[Z1,Z2], intervals containing pure clusters on projections.
• K=K(X,Xi), kernel features.
• HK=[K1,K2], intervals on kernel features

Kernel-based SVM is equivalent to linear SVM in the explicitly constructed
kernel space, enhancing this space leads to improvement of results.
LDA is one option, but many other algorithms benefit from information in
enhanced feature spaces; best results in various combination X+Z+Q+H+K+HK.

Binary features

Binary features:

• B1: unrestricted projections;
MAP classifiers, p(C|b); 2NC regions, complexity O(1)

• B2: Binary: restricted by other binary features;
complexes b1 ᴧ b2 … ᴧ bk; complexity O(2k)

• B3: Binary: restricted by distance;
b ᴧ r1 є [r1-, r1+] ... ᴧ rk є [rk-, rk+];
separately for each b value.

• Ex: b=1, r1 є [0, 1]

 take vectors only from this slice

N1: Nominal – like binary.

r1

b

Datasets

Dataset #Features #Samples #Samples per class

Australian 15 690 383 no 307 yes

Appendicitis 7 106 85 C1 21 C2

Heart 13 303 164 absence 139 presence

Diabetes 8 768 268 C1 500 C2

Wisconsin 9 699 458 benign 241 malignant

Hypothyroid 21 3772 93 C1 191 C2 3488 C3

B1/B2 Features

Dataset B1/B2 Features

Australian F8 < 0.5 F8 ≥ 0.5 ᴧ F9 ≥ 0.5

Appendicitis F7 ≥ 7520.5 F7 < 7520.5 ᴧ F4 < 12

Heart F13 < 4.5 ᴧ F12 < 0.5 F13 ≥ 4.5 ᴧ F3 ≥ 3.5

Diabetes F2 < 123.5 F2 ≥ 143.5

Wisconsin F2 < 2.5 F2 ≥ 4.5

Hypothyroid F17 < 0.00605 F17 ≥ 0.00605 ᴧ F21 < 0.06472

Example of B1 features taken from important segments of decision trees.
These features used in various learning systems greatly simplify their models and
increase their accuracy.
Convert Decision Tree to Distance Functions for more!
Extending training vectors with these features makes almost all learning
algorithms reach similar high accuracy!
Other features that frequently proved useful on such data: P1 prototypes.

Description of new features

X - original features

K - kernel features (Gaussian local kernels)

Z - unrestricted linear projections

H - restricted (clustered) projections

15 feature spaces based on combinations of these 4 different type of
features may be constructed to extend original space: X, K, Z, H,
K+Z, K+H, Z+H, K+Z+H, X+K, X+Z, X+H, X+K+Z, X+K+H, X+Z+H, X+K+Z+H.

The final vector X is thus composed from a number of
X = [x1..xn, z1.., h1.., k1..] features.
In the SF space linear discrimination is used (SVML),
although other methods may find better solution.

Only a few results are presented here (big table).

SFM vs SVM

SFM generalize SVM approach by explicitly building feature space:
enhance your input space adding kernel features zi (X)=K(X;SVi)

+ any other useful types of features.

SFM advantages comparing to SVM:

• Kernel-based SVM  SVML in explicitly constructed kernel
space, allows for various feature selection methods, local kernel
optimization.

• Extend input + kernel space => improvement.

• Linear discrimination on explicit representation of features
= easy interpretation of SFM functions as combination of local
similarity evaluations (biologically plausible).

SFM vs SVM

How to extend the feature space, creating SF space?

• Use various kernels with various parameters.

• Use global features obtained from various projections.

• Use local features to handle exceptions.

• Use feature selection to define optimal support
feature space.

Many algorithms may be used in SF space to generate the final
solution.

In the current version three types of features are used, but many
extensions are possible.

Results
SVM vs SFM in the kernel space only

Results: SFM in extended spaces

Results: kNN in extended spaces

Results: SSV in extended spaces

Learning from others …

Learn to transfer knowledge by extracting interesting features created by
different systems. Ex. prototypes, combinations of features with thresholds …

=> Universal Learning Machines.

Classify all types of features – what type of info they extract?

B1: Binary – unrestricted projections b1
B2: Binary – complexes b1 ᴧ b2 … ᴧ bk

B3: Binary – restricted by distance

R1: Line – original real features ri; non-linear thresholds for “contrast
 enhancement“ s(ribi); intervals (k-sep).

R4: Line – restricted by distance, original feature; thresholds; intervals (k-sep);
more general 1D patterns.

P1: Prototypes: general q-separability, weighted distance functions or
specialized kernels.

M1: Motifs, based on correlations between elements rather than input values.

  1 1 1 2 2 20 , , ...ib r r r r r r +  +          

SFM conclusions

• SFM is focused on generation of new features, rather
than optimization and improvement of classifiers.

• SFM may be seen as mixture of experts; each expert is a simple
model based on single feature: projection, localized projection,
optimized projection, various kernel features.

• For different data different types of features may be important
=> no universal set of features, but easy to test and select.

SFM conclusions

• Kernel-based SVM is equivalent to the use of kernel features
combined with LD.

• Mixing different kernels and different types of features: better
feature space than single-kernel solution.

• Complex data require decision borders with different
complexity. SFM offers multiresolution (ex: different dispersions
for every SV).

• Kernel-based learning implicitly project data into high-
dimensional space, creating there flat decision borders and
facilitating separability.

Universal Learning Machines

ULM is composed from two main modules:

• feature constructors,

• simple classifiers.

In machine learning features are used to calculate:

• linear combinations of feature values,

• calculate distances (dissimilarites), scaled (includes selection)

Is this sufficient?

• No, non-linear functions of features carry information that cannot be
easily recovered by CI methods.

• Kernel approaches: linear solutions in the kernel space, implicitly add new
features based on similarity K(X,SV).

• ULM idea: create potentially useful, redundant set of futures.
How? Learn what other models do well! Implement transfer learning.

Results
(SFM in extended spaces)

K=K(X,Xi) Z=WX H=[Z1,Z2]

Dataset Classifier

SVM (#SV) SSV (#Leafs) NB

Australian 84.9±5.6 (203) 84.9±3.9 (4) 80.3±3.8

ULM 86.8±5.3(166) 87.1±2.5(4) 85.5±3.4

Features B1(2) + P1(3) B1(2) + R1(1) + P1(3) B1(2)

Appendicitis 87.8±8.7 (31) 88.0±7.4 (4) 86.7±6.6

ULM 91.4±8.2(18) 91.7±6.7(3) 91.4±8.2

Features B1(2) B1(2) B1(2)

Heart 82.1±6.7 (101) 76.8±9.6 (6) 84.2±6.1

ULM 83.4±3.5(98) 79.2±6.3(6) 84.5±6.8

Features Data + R1(3) Data + R1(3) Data + B1(2)

Diabetes 77.0±4.9 (361) 73.6±3.4 (4) 75.3±4.7

ULM 78.5±3.6(338) 75.0±3.3(3) 76.5±2.9

Features Data + R1(3) + P1(4) B1(2) Data + B1(2)

Wisconsin 96.6±1.6 (46) 95.2±1.5 (8) 96.0±1.5

ULM 97.2±1.8(45) 97.4±1.6(2) 97.2±2.0

Features Data + R1(1) + P1(4) R1(1) R1(1)

Hypothyroid 94.1±0.6 (918) 99.7±0.5 (12) 41.3±8.3

ULM 99.5±0.4(80) 99.6±0.4(8) 98.1±0.7

Features Data + B1(2) Data + B1(2) Data + B1(2)

ULM conclusions

• Systematic explorations of features and transformations
allows for discovery of simple models that more sophisticated
learning systems may miss; results always improve and models simplify!

• Some benchmark problems have been found rather trivial, and have been
solved with a single binary feature, one constrained nominal feature, or one
new feature constructed as a projection on a line connecting means of two
classes – always try simplest methods!

• Kernel-based features offer an attractive alternative to current kernel-based
SVM approaches, offering multiresolution and adaptive regularization
possibilities, combined with LDA or SVNT.

• Analysis of images, multimedia streams or biosequences may require even
more sophisticated ways of constructing features starting from available
input features.

• Learn from others, not only on your own errors!

Universal Learning Machines

Meta-Learning

T-based meta-learning

To create successful meta-learning through search in the model space fine
granulation of methods is needed, extracting info using support features,
learning from others, knowledge transfer and deep learning.

Learn to compose, using complexity guided search, various transformations
(neural or processing layers), for example:

• Creation of new support features: linear, radial, cylindrical, restricted
localized projections, binarized … feature selection or weighting.

• Specialized transformations in a given field: text, bio, signal analysis, ….

• Matching pursuit networks for signal decomposition, QPC index, PCA or ICA
components, LDA, FDA, max. of mutual information etc.

• Transfer learning, granular computing, learning from successes: discovering
interesting higher-order patterns created by initial models of the data.

• Stacked models: learning from the failures of other methods.

• Schemes constraining search, learning from the history of previous runs at
the meta-level.

Real meta-learning!

Search space of all possible models is too large to explore it exhaustively,
design system architecture to support knowledge-based search.

Meta-learning: learning how to learn, replace experts who search for best
models making a lot of experiments.

• Abstract view, uniform I/O, uniform results management.

• Directed acyclic graphs (DAG) of boxes representing scheme

• placeholders and particular models, interconnected through I/O.

• Configuration level for meta-schemes, expanded at runtime level.

An exercise in software engineering for data mining!

Intemi, Intelligent Miner

Meta-schemes: templates with placeholders.

• May be nested; the role decided by the input/output types.

• Machine learning generators based on meta-schemes.

• Granulation level allows to create novel methods.

• Complexity control: Length of the program/errors + log(time)

• A unified meta-parameters description, defining the range of sensible
values and the type of the parameter changes.

Complex machines on vowel data

Number on far left =
final ranking.

Gray bar =
 accuracy

Small bars (up-down)
show estimation of:
total complexity,
time,
memory.

Numbers in the middle
= process id
(refer to models in the
previous table).

Summary

1. Challenging data cannot be handled with existing DM tools.

2. Visualization of hidden neuron’s shows that frequently perfect but non-
separable solutions are found despite base-rate outputs.

3. Linear separability is not the best goal of learning, other targets that
allow for easy handling of final non-linearities may work better.

4. k-separability defines complexity classes for non-separable data.

5. Similarity-based framework enables meta-learning as search in the
model space, heterogeneous systems add fine granularity.

6. Transformation-based learning shows the need for component-based
approach to DM, discovery of simplest models and support features.

7. SFM and ULM may do more than SVMs.

8. Meta-learning should replace experts in automatically creating new
optimal learning methods on demand.

 Many things to finish … Can deep learning do the same?

Soul or brain: what makes us human?
Interdisciplinary Workshop with theologians,
Toruń 19-21.10.2016

Monthly international
developmental seminars
(2017): Infants, learning,
and cognitive development

Disorders of consciousness
17-21.09.2017

Autism: science, therapies
23.05.2017

http://www.tkk.umk.pl/

Thank for
synchronization

of your neurons

Google: W. Duch

=> talks, papers, projects, lectures …

