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NeuroCog projects 

Neurocognitive Informatics: understanding complex  
cognition => creating algorithms that work in similar way.  
 

• Computational creativity, insight, intuition, imagery. 

• Imagery agnosia, amusia, musical talent. 

• Neurocognitive approach to language, word games.   

• Brain stem models & consciousness in artificial systems. 

• Medical information retrieval, analysis, visualization.  

• Comprehensive theory of autism, ADHD, phenomics, education.  

• Understanding neurodynamics, EEG signals, neurofeedback. 

• Geometric theory of brain-mind processes.  

• Infants: observation, perception/WM development.  

• Neural determinism, free will & social consequences. 



My group of neuro-cog-fanatics 



In search of the sources  
of brain's cognitive activity 

Project „Symfonia”, NCN, Kraków, 18 July 2016 



Computational QM 

Graphical representation of model spaces. Vol. I Basics. 
Springer Verlag, Berlin Lecture Notes in Chemistry  
Vol. 42 (1986);  Vol. II has never been written …  

Idea:  

Differential equations, such as Schrodinger equations in quantum mechanics 
are approximated by algebraic equations defined in tensor spaces with proper 
symmetry.    

   

 

In finite dimensional  N-particle Hilbert spaces eigenfunctions  become 
linear combinations a large number of basis functions: 
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SGGA, Symmetric Group Graphical Approach; Lie algebra, Graphs.  



Analyze graph to solve HC=EC 



Discovering the wheel 

1990-95 - before the Internet and repositories of papers …  
 

RBF discovery:  
Broomhead & Lowe (1988), Multivariable functional interpolation 
and adaptive networks. Complex Systems 2: 321–355. 

Duch W (1994) Floating Gaussian Mapping: a new model of 
adaptive systems. Neural Network World 4:645-654 

 

MDS: Torgerson (1958), Sammon 1969.  

Duch W (1995) Quantitative measures for the self-organized 
topographical mapping.  Open Systems and Information Dynamics 
2:295-302  (a set of 3rd order equation instead of minimization).  



Discovering the wheel - reverse 
Although we have Internet some people have yet to rediscover my ideas … 
 

• Duch W (1996) Computational physics of the mind. Computer Physics 
Communication 97: 136-15 

• Perlovsky, L. I. (2016). Physics of the Mind. Frontiers in Systems 
Neuroscience, 10.  fnsys.2016.00084 

 

o Duch W, Diercksen GHF (1995) Feature Space Mapping as a universal 
adaptive system. Computer Physics Comm. 87: 341-371 

o Perlovsky LI. Neural networks and intellect: Using model based concepts. 
New York: Oxford University Press; 2001. 
 

Same with meta-learning, prototype-based learning, transfer functions, 
creativity and intuition, and a few other ideas.  

• Cognitive informatics: HITs, DREAMs & Perfect Babies. A*STAR Cognitive 
Science Symposium, Singapore, September 26, 2005  

• Duch W (2007), Intuition, Insight, Imagination and Creativity. IEEE 
Computational Intelligence Magazine 2(3), 40-52 



Department of Informatics  
in 2008 



CI Projects 

Google W. Duch => List of projects, talks, papers 

Computational intelligence (CI), main themes:  

• Understanding of data: visualization, prototype-based rules.  

• Foundations of computational intelligence: transformation based 
learning, k-separability, learning hard boole’an problems. 

• Novel learning: projection pursuit networks, QPC (Quality of 
Projected Clusters), search-based neural training, transfer learning or 
learning from others (ULM), aRPM,  SFM ...   

• Similarity based framework for metalearning, heterogeneous 
systems, new transfer functions for neural networks. 

• Feature selection, extraction, creation of enhanced spaces. 

• General meta-learning, or learning how to learn, deep learning. 



CI topics 

1. Understanding NN functions 

– Visualization of network functions 

– Feature Space Mapping (FSM)  

– Prototype-rules (P-rules) and Fuzzy rules (F-rules) 

2. NN learning algorithms 

– Support Vector Neural Training (SVNT)  

– Almost Random Projection Method (aRPM)  

3. Foundations of CI 

– K-representability and complex logic  

– Quality of Projected Clusters (QPC) 

– Transformation-based learning, heterogeneous systems 

– Support Feature Machines (SFM) and Universal Learning Machines (ULM) 

4. Meta-learning 

– Framework for Similarity-Based Learning (SBM) 

– Real Meta-Learning 

 



Understanding NN functions 



Visualization of NN mappings 

Problem: NN are black boxes, dangerous to use. Can we trust NN solutions?  

Partial solution: visualize error surfaces;  
visualize activity of hidden/output neurons on known data+add some noise to 
investigate stability of NN mapping, convergence, compare different solutions, 
effects of regularization, type of functions/networks.   

Visualization of multi-dimensional trajectories in weight space on error surfaces.  

• Kordos, M., & Duch, W. (2005). A survey of factors influencing MLP error 
surface. Control and Cybernetics 33(4), 611–631. 

Hidden secrets of neural networks. ICAISC Zakopane, Poland, June 2004  

• Duch W, Visualization of hidden node activity in neural networks:  
I & II. Visualization methods. LN in AI 3070 (2004) 38-43; 44-49 

• Duch W, Internal representations of multi-layered perceptrons. 
Issues in Intelligent Systems: Paradigms. 2005, pp. 49-62. 

 



Trajectories of MLP weights 

Take weights Wi  from iterations i=1..K; do PCA on Wi  covariance matrix. 
Captures 95-97% variance of the training data with just two vectors. Error 
functions in 2D PCA shows realistic learning trajectories! 

No local minima found. Many large flat plains and valleys.  
Many initializations followed by short runs will find good solution.  

Data far from decision borders has almost no influence, the main reduction of 
MSE is achieved by increasing ||W||, sharpening sigmoidal functions.  

M. Kordos  
& W. Duch 
(2005) 



Dynamics of learning 

Output images of the training data vectors mapped by NN:  

• Left: hypothyroid with 3 neurons the network will always under-fit 
the data, unable to separate small classes.  

• Right: even if 6 hidden neurons are used problems with convergence 
may arise in some runs, but in other runs it may work.  

• Stop further learning, start from another initialization.  



Promising convergence 

SCG training, network structure 21-8-3.  
Output vectors displayed. Ideal results: (1,0,0), or (0,1,0) or (0,0,1).   

Two runs, intermediate solutions after 100 iterations,  
 left 164    right 197 errors. 



Converged ... 

Two very good converged solutions after 19 K and 22 K iterations, 
SCG training, 21-8-3, both cases 1 error, ~ same MSE.  

Left: green–blue potential mixing; right: blue–red classes mixing. 
Networks are over-confident and not stable, weights are very large, 
sigmoids are step-like, decision borders are very sharp,  
most training vectors are mapped to a single point, output is (1,0,0) etc.   
New data near decision boundaries may fall on a wrong side.   



Adding regularization 

Regularization expands output clusters, but solution is more smooth 
and stable; below a=0.01 regularization is used.  

Left: solution with 12 hidden neurons, 2 errors;  
Right: small variance (0.001) noise perturbation, 5 additional vectors 
per one training vector added => many errors appear.  
Still regularization is too small.  



MLP/RBF Wine solution 

Wine data, 8-2-3 MLP and 8-6-3 RBF networks.  
Perfect solutions may be dangerous! Add some noise to inputs to 
check for overfitting and see classification margins.  

RBF always provides soft decision borders, not 0-1 outputs, but still 
separable clusters, more stable when small perturbations are added. 



What is inside? 

Many types of internal representations may look identical 

from outside, but generalization may depend on them.  

• Classify different types of internal representations. 

• Take permutational invariance into account: equivalent internal 
representations may be obtained by re-numbering hidden nodes. 

• Good internal representations should form compact clusters in 
the internal space.  

• Check if the representations form separable clusters.  

• Discover poor representations and stop training. 

• Analyze adaptive capacity of networks.  

• .....  



Wine: hidden 2D 

Many solutions in 2D hidden space: which is the best? 
Add noise to input data to see how stable the solution is.  
Here each X => 10 points X+Gaussian noise with 0.05 variance.  

Analysis n higher dimensions done using parallel coordinates, 
projections to polyhedra, FSD, SNE and other techniques.  



Hi-D trajectories 

140 active units (dyslexia model in Emergent neural simulator);  
noisy attractor dynamics, FSD and SNE trajectories with 500 points. 

Thanks to K. Dobosz Viser toolbox, and M. Orliński SNE implementation.  

http://fizyka.umk.pl/~kdobosz/visertoolbox/
http://fizyka.umk.pl/~kdobosz/visertoolbox/
http://fizyka.umk.pl/~kdobosz/visertoolbox/


What feedforward NN really do? 

Vector mappings from the input space to hidden space(s), and finally 
to the output space where data should be separable.  

Hidden-Output mapping done usually by perceptrons.  

A single hidden layer case is analyzed below. 

T = {Xi}  training data, N-dimensional.   

H = {hj(X
i)} T image in the hidden space, j =1 .. NH-dim. 

Y = {yk{h(Xi)} T image in the output space, k =1 .. NC-dim. 

NN goal: scatterograms of  H, the image of T in the hidden space 

should be linearly separable; internal representations will determine 
network generalization capabilities and other properties. 

Is this a good goal? Can it be easily achieved?  
“Universal approximator” theorem is not helpful.   



Linear separability 

 SVM visualization of Leukemia microarray data,  

Horizontal axis   x=WX, vertical - orthogonal projection. 



Approximate separability 

SVM visualization of Heart dataset, overlapping clusters, information in the 
data is insufficient for perfect classification. 



Rules 

QPC visualization of Monks dataset with simple logical structure,  
two logical rules are needed, or combination of two projections. 



Complex distribution 

QPC visualization of concentric rings in 2D with strong noise in remaining 2D; 
transform: nearest neighbor solutions, combinations of ellipsoidal densities. 



Interval transformation 

 8-bit parity data: 9-separability is much easier to achieve than full  linear 
separability; almost impossible to train MLP on such data.  



Much more complex logic …  

Different activations => same cognitive functions in different context? 
Complex logic may be needed to learn from this type of data.  

Mattar, M. G., Cole, M. W., Thompson-Schill, S. L., & Bassett, D. S. (2015).  
A Functional Cartography of Cognitive Systems.  
PLOS Computational Biology, 11(12), e1004533. 



Rules from MLPs 

Why is it difficult? 

Multi-layer perceptron (MLP) networks: stack many perceptron units, 
performing threshold logic:  
M-of-N rule: IF (M conditions of N are true) THEN ...  

Problem: for N  inputs number of subsets is 2N.  
Exponentially growing number of possible conjunctive rules.  



MLP2LN 

Converts MLP neural networks into a network performing logical 
operations (LN). 

Input 

layer  

Aggregation:  
better features 

Output: one 
node per 
class.  

Rule units: 
threshold logic 

Linguistic units: 
windows, filters 



FSM - neurofuzzy systems 

Feature Space Mapping (FSM) constructive neurofuzzy 
system.  Neural adaptation, estimation of probability 
density distribution (PDF) using single hidden layer 
network (RBF-like), with nodes realizing separable basis 
functions (SBF networks): 
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Model of mental processes–FSM nodes representing attractors, mental events.  

Duch W, Diercksen GHF (1995) Feature Space Mapping as a universal adaptive 
system. Computer Physics Communications 87: 341-371 

Duch W (1997) Platonic model of mind as an approximation to neurodynamics. 
In: Brain-like computing and intelligent information systems, ed. S-i. Amari, N. 
Kasabov (Springer, Singapore 1997), chap. 20 



Prototype-based rules 

IF P = arg minR D(X,R) THAN Class(X)=Class(P) 

C-rules (Crisp), are a special case of F-rules (fuzzy rules). 

F-rules (fuzzy rules) are a special case of P-rules (Prototype)!   

P-rules have the form: 

D(X,R) = dissimilarity (distance) function, determining local decision borders.  

P-rules are easy to interpret and offer better description than F-rules!  

IF  X=You are most similar to the P=Superman 
THAN  You are in the Super-league.  

“Similar” may involve different features or D(X,P). What is similar for the brain? 
Kernel features in SVM are particular example of similarity functions.  

• Duch W, Setiono R, Zurada J.M, Computational intelligence methods for 
understanding of data. Proc. of the IEEE 92(5) (2004) 771- 805 

• Duch W, Adamczak R, Grąbczewski K, A new methodology of extraction, optimization 
and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 
12 (2001) 277-306 



P-rules 

Euclidean distance leads to a Gaussian fuzzy membership  functions + product 
as T-norm. In this case FSM = RBF.  

Manhattan function => m(X;P)=exp{|X-P|} 

Various distance functions lead to different MF. 
Ex. data-dependent probabilistic distance functions for symbolic data: 
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Promoters with p-distances 
DNA strings, 57 aminoacids, 53 + and 53 - samples  

tactagcaatacgcttgcgttcggtggttaagtatgtataatgcgcgggcttgtcgt 

Euclidean distance, symbolic  
s =a, c, t, g replaced by x=1, 2, 3, 4  

PDF distance, symbolic  
s=a, c, t, g replaced by p(s|+)  



P-rules and C-rules 

New distance functions from info theory => interesting MF. 

MF => new distance function, with local similarity D(X,R) for each cluster. 

Crisp logic rules: use Chebyshev distance (L norm): 

DCh(X,P) = ||XP|| = maxi Wi |XiPi|  

DCh(X,P) = const => rectangular contours.  

Chebyshev distance with thresholds P  

 IF DCh(X,P)  P THEN C(X)=C(P) 

is equivalent to a conjunctive crisp rule 

IF X1[P1P/W1,P1+P/W1] …XN [PN P/WN,PN+P/WN] 

THEN C(X)=C(P) 



P-rules and intuitive thinking 

Learning from partial observations:  

Ohm’s law V=I×R; Kirhoff’s V=V1+V2.   
 

Geometric representation of qualitative facts: 

+ increasing, 0 constant, - decreasing. 
 

True (I-,V-,R0), (I+,V+,R0), false (I+,V-,R0).  

5 laws: 3 Ohm’s   2 Kirhoff’s laws. 

All laws A=B+C, A=B×C , A-1=B-1+C-1, have 
identical geometric interpretation! 
 

13 true, 14 false facts; simple P-space, but 
complex neurodynamics. 

Question in qualitative physics (PDP book):  
if R2 increases, R1 and Vt are constant, what will 
happen with current and V1, V2 ? 



Decision borders 

Euclidean distance from 3 
prototypes, one per class.  

Minkovski a=20 distance from 3 
prototypes.  

D(P,X)=const and decision borders D(P,X)=D(Q,X). 



NN learning algorithms 



Support Vectors 

SVM gradually focuses on the training vectors near the decision 
hyperplane – can we do the same with MLP?   



Selecting Support Vectors 

Active learning: if contribution to the parameter change is negligible 
remove the vector from training set. 

If the difference  

 

is sufficiently small the pattern X will have negligible influence on the 
training process and may be removed from the training. 

Conclusion: select vectors with eW(X)>emin, for training. 

2 problems: possible oscillations, and strong influence of outliers.  

Solution: adjust emin dynamically to avoid oscillations;  
    remove also vectors with eW(X) > 1emin = emax 
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SVNT algorithm (2005) 

Initialize the network parameters W,  
 set e=0.01, emin=0, set SV=T.  

Until no improvement is found in the last Nlast iterations do 

• Optimize network parameters for Nopt steps on SV data. 

• Run feedforward step on T to determine overall accuracy and 
errors, take SV={X|e(X) [emin,1emin]}. 

• If the accuracy increases: 

      compare current network with the previous best one, 
 choose the better one as the current best 

• increase emin=emin+e and make forward step selecting SVs 

• If the number of support vectors |SV| increases: 

  decrease eminemine;  

  decrease e = e/1.2 to avoid large changes 



XOR solution 



Hypothyroid data example 

2 years real medical screening tests for thyroid diseases, 3772 cases with 93 
primary hypothyroid and 191 compensated hypothyroid, the remaining 3488 
cases are healthy; 3428 test, similar class distribution.  

21 attributes (15 binary, 6 continuous), but only 2 binary attributes (on 
thyroxine, and thyroid surgery) are useful, therefore 8 attributes are used.  

Method    % train    % test   

C-MLP2LN rules  99.89   99.36   

MLP+SCG, 4 neurons   99.81   99.24   

SVM Minkovsky opt kernel 100.0   99.18  

MLP+SCG, 4 neur, 67 SV  99.95   99.0   

MLP+SCG, 12 neur.   100.0   98.8   

Cascade correlation 100.0  98.5 

MLP+backprop    99.60   98.5  

SVM Gaussian kernel  99.76   98.4  



Biological inspirations 
Cortical columns may learn to respond to stimuli 
with complex logic, resonating in different way. 

Liquid state machine (LSM; Maas, Markram 2004) 
– large spiking recurrent neural network, 
randomly connected.  

S(t) => LSM (x,t), spatio-temporal pattern of 
activations, creating separable high dimensional 
projections, perceptrons can handle that. 

Simplifications for static data:  
 

1) Oscillators based on combination of two neurons   s(W.X-b) – s(W.X-b’)  
give localized projections  specific resonant states!  
Used in MLP2LN architecture for extraction of logical rules from data. 
 

2) Single hidden layer constructive network based on random projections. 



aRPM 

aRMP, Almost Random Projection Machine (with Hebbian learning):  

generate random combinations of inputs (line projection) z(X)=W.X,  

find and isolate pure cluster h(X)=G(z(X)); localized kernel on projections,   
estimate relevance of h(X), ex. MI(h(X),C),  
leave only good nodes and continue until each vector activates minimum k 
hidden nodes.  

Count how many nodes vote for each class and plot: no LDA needed!  
No need for learning at all!  



Main idea 
Following biological inspirations - aRPM, single hidden layer constructive 
network based on random projections added only if useful;  

easily solve highly-non-separable problems.  

Kernel-based features extend the hypothesis space.  
Cover theorem guarantees better separability.  

Linear kernels define new features t(X;W)=KL(X,W)=X·W based on a 
projection on the W direction.  

Gaussian kernels g(X,W)=exp(-||X-W||/(2σ2)) evaluate similarity between 
two vectors using weighted radial distance function. 

The final discriminant function is constructed as a linear combination of 
such kernels. 

Focus on margin maximization in aRPM; new projections added only if 
they increase correct classification probability of those examples that are 
wrongly classified or are close to the decision border. 



aRPM 

Some projections may not be very useful, but the distribution of the 
training data along direction may have a range of values that includes a 
pure cluster of projected patterns.  
This creates binary features bi(X) = t(X;Wi,[ta,tb]) ϵ {0,1}, based on linear 
restricted projection in the direction W. 

Good candidate feature should cover some minimal number η of training 
vectors. 

Features based on kernels - here only Gaussian kernels with several values 
of dispersion σ g(X;Xi,σ)=exp(-||Xi-X||2/2σ2). 

Local kernel features have values close to zero except around their 
support vectors Xi.  

Their usefulness is limited to the neighborhood O(Xi) in which gi(X)>ϵ. 



aRPM with margin optimization 

In the WTA |A(C|X)-A(¬C|X)| estimates distance from the decision border.  

Specifying confidence of the model for vector XϵC using logistic function:  

F(X)=1/(1+exp(-(A(C|X)-A(¬C|X))))  

gives values around 1 if X is on the correct side and far from the border, 
and goes to zero if it is on the wrong side.  

Total confidence in the model may then be estimated by summing over all 
vectors.  

 The final effect of adding new feature h(X) to the total confidence measure is 
therefore: 

U(H,h)=Σ (F(X;H+h) - F(X;H)) 

If U(H,h)>α than the new feature is accepted providing a larger margin.  

To make final decision aRPM with margin maximization uses WTA mechanism 
or LD. 



Heart Statlog data 
 

no margin  
maximization 

with margin  
maximization 

Axes: number of voting nodes 
for each vector; color = class 

More vectors activate 
many nodes from correct 
class, few vectors are 
close to the decision 
border (majority voting).   



no margin maximization with margin maximization 

Wine data, 3 classes, pairwise 



Datasets 



aRMP results 

Simplest method that solves highly-non separable problems like parity! 



aRPM with locally optimized kernels 

To create multi-resolution kernel features – first with large σ (smooth 
decision borders), then smaller σ (features more localized).  

The candidate feature is converted into a permanent node only if it 
increases classification margin.  

Incremental algorithm, expand feature space until no improvements; 
move vectors away from decision border. 

WTA - sum of the activation of hidden nodes. Projections with added 
intervals give binary activations bi(X), but the values of kernel features 
g(X;Xi,σ) are summed, giving a total activation A(C|X) for each class.  

 

Plotting A(C|X) versus A(¬C|X) for each vector leads to scatterograms, 
giving an idea how far is a given vector from the decision border. 



aRMP with  
LOK results, 

simplest 
version 



aRMP conclusions 
aRPM has many advantages that has not been yet explored.  
Some work on ELM (Extreme Learning Machines) goes in this direction.  

• Biological plausibility – virtually no learning involved, just generation 
and selection of features.  

• Solves fast learning problem. Focus on generation of new features 
followed by the WTA, simpler and faster than typical NN networks. 

• Selection of network nodes to ensure wide margins.  

• Adding kernel features, locally optimized, relations to kernel SVM  

• Feature selection and construction, finding interesting views on the 
data is the basis of natural categorization and learning processes. 

• Scatterograms of WTA output show effects of margin optimization, and 
allow for estimation of confidence in classification of a given data. 

 

Further improvements: admission of impure clusters instead of binary 
features, use of other kernel features, locally optimized kernels, selection 
of candidate SV, optimization of the algorithm. 

 

 



Foundations of Machine Learning 



Principles: information compression 
Neural information processing in perception and cognition:  
information compression, or algorithmic complexity.  
In computing: minimum length (message, description) encoding.  
 

Wolff (2006): all cognition and computation is information compression!  
Analysis and production of natural language, fuzzy pattern recognition, 
probabilistic reasoning and unsupervised inductive learning. 

Talks about multiple alignment, unification and search, but only models for 
sequential data and 1D alignment have been demonstrated.  

Information compression: encoding new information in terms of old.  

Measure of syntactic and semantic information (Duch, 
Jankowski 1994); based on the size of the minimal graph 
representing a given data structure or knowledge-base 
specification, thus it goes beyond alignment;  
real information = what model cannot predict.  
“Surprise” and curiosity measures: Pfaffelhuber (1972), 
Palm, Schmidhuber, Baldi … all based on the same idea.  



What can be learned? 

Linearly separable or almost separable problems are relatively simple – 
deform planes or add dimensions to make data separable. 

How to define “slightly non-separable”, or relatively easy to learn?  
Now we have only separable problems and one vast realm of the rest.  



Easy problems 

• Approximately linearly separable problems in the 
original feature space: linear discrimination is 
sufficient (always worth trying, but no-one does!).  

• Simple topological deformation of decision borders 
is sufficient  – linear separation is then possible in 
extended/transformed spaces.  

This is frequently sufficient for pattern recognition 
problems (more than half of UCI problems).  

• RBF/MLP networks with one hidden layer also solve such problems easily, 
but convergence/generalization for anything more complex than XOR is 
problematic.  

SVM adds new features to “flatten” the decision border:  
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achieving larger margins/separability in the X+Z space. 



Neurons learning complex logic 

Boole’an functions are difficult to learn, n bits but 2n nodes => 
combinatorial complexity; similarity is not useful, for parity all neighbors 
are from the wrong class. MLP networks have difficulty to learn functions 
that are highly non-separable.   

Projection on W=(111 ... 111) gives clusters with 0, 1, 2 ... n bits; 

solution requires abstract imagination + easy categorization. 

Ex. of 2-4D 
parity 
problems. 

 

Neural logic 
can solve it 
without 
counting;  
find a good 
point of view.  



Easy and difficult problems 

Linear separation: good goal if simple topological  
deformation of decision borders is sufficient. 
RBF/MLP networks with one hidden layer solve such problems. 

Difficult problems: disjoint clusters, combinatorial problems, complex logic. 
Networks with localized functions need exponentially large number of nodes. 
 

Q1: How to characterize complexity of Boolean functions?  Non-separability is 
not sufficient.  
Q2: What is the simplest model for a given type of data?  
Q3: How to learn such model in an automatic way?  
 

Boolean functions:  n=2  vectors V={00,01,10,11},    
Boolean functions {0000, 0001 ... 1111}, ex. 0001 = AND, 0110 = OR, 
each function is identified by number from 0 to 15 = 2K-1.   
 

For n bits there are K=2n binary vectors that can be represented as vertices of 
n-dimensional hypercube.  
Each Boolean function is identified by K bits.  
BoolF(Bi) = 0 or 1  for i=1..K, leads to the 2K Boolean functions. 
 
 



Boolean functions 

n=2, 16 functions, 12 separable, 4 not separable. 

n=3, 256 f, 104 separable (41%), 152 not separable. 

n=4, 64K=65536, only 1880 separable (3%) 

n=5, 4G, but << 1% separable ... bad news!  

Most bioinformatics or neuroimaging data may require n >100.  

Existing methods may learn some non-separable functions,  
but most functions cannot be learned !   
 

Example: n-bit parity problem; many papers in top journals. 
No off-the-shelf systems are able to solve such problems.  
 
For all parity problems SVM is below base rate!  
Such problems are solved only by special neural architectures or special 
classifiers – if the type of function is known.  
 
But parity is still trivial ... solved by  
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Goal of learning 

If simple topological deformation of decision borders is sufficient linear 
separation is achieved in high dimensional spaces, “flattening” non-
linear decision borders; this is frequently the case in pattern recognition 
problems. RBF/MLP networks with one hidden layer solve the problem. 

For complex logic this is not sufficient; networks with localized functions need 
exponentially large number of nodes. 
 

Such situations arise in AI reasoning problems, real perception, object 
recognition, text analysis, bioinformatics ...   
 

Linear separation is too difficult, set an easier goal.  
Linear separation: projection on 2 half-lines in the kernel space:  
line y=WX, with y<0 for class – and y>0 for class +.  
 

Simplest extension: separation into k-intervals, or k-separability.  
For parity: find direction W with minimum # of intervals,  y=W.X   



k-sep learning 
Try to find lowest k with good solution: 

  
• Assume k=2 (linear separability), try to find a good solution;  
 MSE error criterion 
•  

 
• if k=2 is not sufficient, try k=3; two possibilities are C+,C,C+ and  

C, C+, C this requires only one interval for the middle class; 
• if k<4 is not sufficient, try k=4; two possibilities are C+, C, C+, C and C, 

C+, C, C+ this requires one closed and one open interval. 

Network solution  to minimization of specific cost function. 
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First term = MSE, second penalty for “impure” clusters, third term = reward for 
the large clusters.  
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3D case 

3-bit functions: X=[b1b2b3], from [0,0,0] to [1,1,1]  

f(b1,b2,b3) and f(b1,b2,b3) are symmetric (color change)  

8 cube vertices, 28=256 Boolean functions.  

0 to 8 red vertices: 1, 8, 28, 56, 70, 56, 28, 8, 1 functions. 
 

For optimized direction W on all 28 functions index projection W.X gives:  

k=1 in 2 cases, all 8 vectors in 1 cluster (all 8 black or all 8 white) 

k=2 in 14 cases, 8 vectors in 2 clusters (linearly separable)  

k=3 in 42 cases, clusters E O E or O E O    Even, Odd 

k=4 in 70 cases, clusters E O E O or O E O E  

Symmetrically, k=5-8 for 70, 42, 14, 2 cases.  

Most logical functions have 4 or 5-separable projections.  
 

Learning = find best set of projections for each function.  

Enforcing separability on k-separable data is hard for k>2, but assuming  
k-separability as a goal makes learning easier.  



4D case 

4-bit functions: X=[b1b2b3b4], from [0,0,0,0] to [1,1,1,1]  

16 cube vertices, 216=65636=64K functions.  
 

Random initialization of a single perceptron has 39.2% chance of creating 8 
or 9 clusters for the 4-bit data.  
 

Learning optimal directions W finds:  

k=1 in 2 cases, all 16 vectors in 1 cluster (all black or all white) 

k=2 in 2.9% cases (or 1880), 16 vectors in 2 clusters (linearly sep)  

k=3 in 22% of all cases, clusters B R B or W R W 

k=4 in 45% of all cases, clusters R W R W or W R W R 

k=5 in 29% of all cases.  
 

Hypothesis: for n-bits highest k=n+1 ? 
 

For 5-bits there are 32 vertices and already 232=4G=4.3.109 functions. 

Most are 5-separable, less than 1% is linearly separable! 

 



Network solution 

Can one learn a simplest model for highly complex logical functions?  

2-separable (linearly separable) problems are easy;  
non separable problems may be broken into k-separable, k>2. 

 

Blue: sigmoidal neurons 
with threshold, brown – 
linear neurons.  

X1 

X2 

X3 

X4 

y=W.X 
+

1 



1 

+

1 



1 

s(by+1) 

s(by+2) 

+

1 

+

1 +

1 +

1 

s(by+4) 

Neural architecture for 
k=4 intervals, or  
4-separable problems. 



k-separability 

Can one learn all Boolean functions?  

Problems may be classified as 2-separable (linear separability);  
non separable problems may be broken into k-separable, k>2. 

 

Blue: sigmoidal neurons 
with threshold, brown – 
linear neurons.  
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Neural architecture for 
k=4 intervals, or  
4-separable problems. 



QPC, Projection Pursuit 

What is needed to learn data with complex logic? 

• cluster non-local areas in the X space, use W.X 

• capture local clusters after transformation, use G(W.X-)  

SVMs fail because the number of directions W that should be  

considered grows exponentially with the size of the problem n. 

What will solve it? Projected clusters!   
 

1. A class of constructive neural network solution with G(W.X-) functions 
combining non-local/local projections, with special training algorithms. 

2. Maximize the leave-one-out error after projection: take some localized 
function G, count in a soft way cases from the same class as Xk. 

 

 

 
Grouping  and separation; projection may be done directly to 1 or 2D for 
visualization, or higher D for dimensionality reduction, if W has d columns.     
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Parity n=9 

Simple gradient learning; QPC index shown below. 



Learning hard functions 

Training almost perfect for parity, with linear growth in the number of 
vectors for k-sep. solution created by the constructive neural algorithm. 



Real data 

 On simple data results are similar as from SVM (because they are almost 
optimal), but c3sep models are much simpler although only 3-sep. assumed. 



Frameworks for Machine Learning 



Similarity-based framework 

Search for good models requires a frameworks to build and evaluate them.   
p(Ci|X;M) posterior classification probability or y(X;M) approximators, 
models M are parameterized in increasingly sophisticated way.  
Similarity-Based Learning (SBL) or S-B Methods provide such framework.  
 

(Dis)similarity:  
• more general than feature-based description,  
• no need for vector spaces (structured objects),  
• more general than fuzzy approach (F-rules are reduced to P-rules),  
• includes nearest neighbor algorithms, MLPs, RBFs, separable function 

networks, SVMs, kernel methods, specialized kernels, and many others!  

A systematic search (greedy, beam), or evolutionary search in the space of all 
SBL models is used to select optimal combination of parameters & procedures,  
opening different types of optimization channels,  
trying to discover appropriate bias for a given problem. 
 

Result: several candidate models are created, already first very limited version 
gave best results in 7 out of 12 Stalog problems.  



SBM framework components 

• Pre-processing: objects O => features X, or (diss)similarities D(O,O’).  
• Calculation of similarity between features d(xi,yi) and objects D(X,Y). 
• Reference (or prototype) vector R selection/creation/optimization.  
• Weighted influence of reference vectors G(D(Ri,X)), i=1..k. 
• Functions/procedures to estimate p(C|X;M) or approximator y(X;M).  
• Cost functions E[DT;M], various model selection/validation procedures.  
• Optimization procedures for the whole model Ma. 
• Search control procedures to create more complex models Ma+1. 
• Creation of ensembles of (global, local, competent) models. 

 
• M={X(O), d(.,.), D(.,.), k, G(D), {R}, {pi(R)}, E[.], K(.), S(.,.)}, where: 
• S(Ci,Cj) is a matrix evaluating similarity of the classes;  

a vector of observed probabilities pi(X) instead of hard labels.  
 
The kNN model p(Ci|X;kNN) = p(Ci|X;k,D(.),{DT});  
the RBF model: p(Ci|X;RBF) = p(Ci|X;D(.),G(D),{R}),   
MLP, SVM and many other models may all be “re-discovered” as a part of SBL. 



Meta-learning in SBL scheme 

Start from kNN, k=1, all data & features, Euclidean distance, end with a new 
model based on novel combination of procedures and parameterizations. 

k-NN 67.5/76.6% 

+d(x,y);  

Canberra 89.9/90.7 % 

+ si=(0,0,1,0,1,1);  

71.6/64.4 % 

+selection,  

 67.5/76.6 % 

+k opt; 67.5/76.6 % 

+d(x,y) + si=(1,0,1,0.6,0.9,1);   

Canberra 74.6/72.9 % 
+d(x,y) + selection;  

Canberra 89.9/90.7 % 

k-NN 67.5/76.6% 

+d(x,y);  

Canberra 89.9/90.7 % 

+ si=(0,0,1,0,1,1);  

71.6/64.4 % 
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 67.5/76.6 % 
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+d(x,y) + si=(1,0,1,0.6,0.9,1);   
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Canberra 89.9/90.7 % 

k-NN 67.5/76.6% 

+d(x,y);  

Canberra 89.9/90.7 % 

+ si=(0,0,1,0,1,1);  

71.6/64.4 % 

+ranking,  

 67.5/76.6 % 

+k opt; 67.5/76.6 % 

+d(x,y) + si=(1,0,1,0.6,0.9,1);   

Canberra 74.6/72.9 % 
+d(x,y) + selection;  

Canberra 89.9/90.7 % 



Meta-learning in SBL scheme 

SBL program with many options developed by Karol Grudziński.  

k-NN 67.5/76.6% 

+d(x,y);  

Canberra  89.9/90.7% 

+ si=(0,0,1,0,1,1);  

       71.6/64.4 % 

+selection,  

 67.5/76.6 % 

+k opt; 67.5/76.6% 

+d(x,y) + si=(1,0,1,0.6,0.9,1);   

Canberra 74.6/72.9 % 
+d(x,y) + selection;  

Canberra 89.9/90.7 % 



Kernels = similarity functions 

Gaussian kernels in SVM: zi (X)=G(X;XI ,s) radial features, X=>Z 
Gaussian mixtures are close to optimal Bayesian errors. Solution requires 
continuous deformation of decision borders and is therefore rather easy.   

Support Feature Machines (SFM): construct features based on projections, 
restricted linear combinations, kernel features, use feature selection. 

Gaussian kernel, C=1. 
In the kernel space Z decision borders are flat, 
but in the X space highly non-linear!  
 
SVM is based on quadratic solver, without 
explicit features, but using Z features explicitly 
has some advantages:   
Multiresolution (Locally Optimized Kernels): 
different s for different support features,  
or using several kernels zi (X)=K(X;XI ,s).  
Use linear solvers, neural network, Naïve 
Bayes, or any other algorithm, all work fine.  



Transformation-based framework 

Find simplest model that is suitable for a given data, creating non-sep. that is 
easy to handle: simpler models generalize better, interpretation. 

Compose transformations (neural layers), for example:  
 

•  Matching pursuit network for signal decomposition, QPC index. 

•  PCA network, with each node computing principal component. 

•  LDA nets, each node computes LDA direction (including FDA). 

•  ICA network, nodes computing independent components. 

•  KL, or Kullback-Leibler network with orthogonal or non-orthogonal  
     components; max. of mutual information is a special case.   

•  c2 and other statistical tests for dependency to aggregate features. 

•  Factor analysis network, computing common and unique factors. 
  

Evolving Transformation Systems (Goldfarb 1990-2008), giving unified 
paradigm for inductive learning, structural processes as representations. 



Heterogeneous systems 

Next step: use components from different models.  
Problems requiring different scales (multiresolution). 
 

2-class problems, two situations:  
 

C1 inside the sphere, C2 outside. 
 MLP: at least N+1 hyperplanes, O(N2) parameters.  
 RBF:  1 Gaussian, O(N) parameters.  
C1 in the corner defined by (1,1 ... 1) hyperplane, C2 outside. 
 MLP: 1 hyperplane, O(N) parameters.  
 RBF:  many Gaussians, O(N2) parameters, poor approx. 
Combination: needs both hyperplane and hypersphere!  
 

Logical rule: IF x1>0 & x2>0  THEN  C1 Else C2 

is not represented properly neither by MLP nor RBF! 
 
Different types of functions in one model, first step beyond inspirations from 
single neurons => heterogeneous models are inspired by neural minicolumns, 
more complex information processing. 



Heterogeneous everything 

Homogenous systems: one type of “building blocks”, same type of 
decision borders, ex: neural networks, SVMs, decision trees, kNNs 

Committees combine many models together, but lead to complex 
models that are difficult to understand.   

Ockham razor: simpler systems are better.  
Discovering simplest class structures, inductive bias of the data,  
requires Heterogeneous Adaptive Systems (HAS).  
 
HAS examples: 
NN with different types of neuron transfer functions. 
k-NN with different distance functions for each prototype. 
Decision Trees with different types of test criteria. 
 
1. Start from large network, use regularization to prune. 
2. Construct network adding nodes selected from a candidate pool. 
3. Use very flexible functions, force them to specialize.   



Taxonomy of NN activation functions 

Duch W, Jankowski N (1999) Survey of neural transfer functions,  

Neural Computing Surveys 2: 163-213, now ~300 citations and growing.  



Taxonomy of NN output functions 

Perceptron: implements logical rule x> for x with Gaussian uncertainty. 



Taxonomy - TF 



HAS decision trees 
Decision trees select the best feature/threshold value for univariate and 
multivariate trees:  

Decision borders: hyperplanes.  

Introducing tests based on La Minkovsky metric. 
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Such DT use radial kernel features! 

 

For L2 spherical decision border are produced. 

For L∞ rectangular border are produced. 

For large databases first clusterize data to get candidate references R. 
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SSV HAS DT example 

SSV HAS tree in GhostMiner 3.0, Wisconsin breast cancer (UCI) 
699 cases, 9 features (cell parameters, 1..10) 
Classes: benign 458 (65.5%) & malignant 241 (34.5%). 

Single rule gives simplest known description of this data:  

IF  ||X-R303|| < 20.27 then malignant 

                      else benign      coming most often in 10xCV 

Accuracy  = 97.4%,  good prototype for malignant case!  

Gives simple thresholds, that’s what MDs like the most! 

Best 10CV around  97.5±1.8% (Naïve Bayes + kernel, or opt. SVM) 

SSV without distances:  96.4±2.1% 

C 4.5 gives   94.7±2.0% 
 

Several simple rules of similar accuracy but different specificity or sensitivity 
may be created using HAS DT.  
Need to select or weight features and select good prototypes. 



Support Feature Machines 

General principle: complementarity of information processed by parallel 
interacting streams with hierarchical organization (Grossberg, 2000). 

Cortical minicolumns provide various features for higher processes. 

Create information that is easily used by various ML algorithms: explicitly 
build enhanced space adding more transformations.  
 

• X , original features 
• Z=WX, random linear projections, other projections (PCA< ICA, PP) 
• Q = optimized Z using Quality of Projected Clusters or other PP techniques. 
• H=[Z1,Z2], intervals containing pure clusters on projections.  
• K=K(X,Xi), kernel features. 
• HK=[K1,K2], intervals on kernel features  

 

Kernel-based SVM is equivalent to linear SVM in the explicitly constructed 
kernel space, enhancing this space leads to improvement of results.  
LDA is one option, but many other algorithms benefit from information in 
enhanced feature spaces; best results in various combination X+Z+Q+H+K+HK.  



Binary features 

Binary features:  

• B1: unrestricted projections;  
MAP classifiers, p(C|b); 2NC regions, complexity O(1) 

• B2: Binary: restricted by other binary features;  
complexes b1 ᴧ b2 … ᴧ bk; complexity O(2k) 

• B3: Binary: restricted by distance;  
b ᴧ r1 є [r1-, r1+] ... ᴧ rk є [rk-, rk+];  
separately for each b value.  
 

• Ex: b=1, r1 є [0, 1] 

 take vectors only from this slice 

N1: Nominal – like binary. 

r1 

b 



Datasets 

Dataset #Features #Samples #Samples per class 

Australian 15 690 383 no 307 yes 

Appendicitis 7 106 85 C1 21 C2 

Heart 13 303 164 absence 139 presence 

Diabetes 8 768 268 C1 500 C2 

Wisconsin 9 699 458 benign 241 malignant 

Hypothyroid 21 3772 93 C1 191 C2 3488 C3 



B1/B2 Features 

Dataset                                 B1/B2 Features 

Australian F8 < 0.5 F8 ≥ 0.5 ᴧ F9 ≥ 0.5 

Appendicitis F7 ≥ 7520.5 F7 < 7520.5 ᴧ F4 < 12 

Heart F13 < 4.5  ᴧ  F12 < 0.5 F13 ≥ 4.5 ᴧ F3 ≥ 3.5 

Diabetes F2 < 123.5 F2 ≥ 143.5 

Wisconsin F2 < 2.5 F2 ≥ 4.5 

Hypothyroid F17 < 0.00605 F17 ≥ 0.00605 ᴧ F21 < 0.06472 

Example of B1 features taken from important segments of  decision trees. 
These features used in various learning systems greatly simplify their models and 
increase their accuracy.  
Convert Decision Tree to Distance Functions for more! 
Extending training vectors with these features makes almost all learning 
algorithms reach similar high accuracy!  
Other features that frequently proved useful on such data: P1 prototypes. 



Description of new features 

X - original features 

K - kernel features (Gaussian local kernels) 

Z - unrestricted linear projections 

H - restricted (clustered) projections 

15 feature spaces based on combinations of these 4 different type of 
features may be constructed to extend original space:         X, K, Z, H,  
K+Z, K+H, Z+H, K+Z+H, X+K, X+Z, X+H, X+K+Z, X+K+H, X+Z+H, X+K+Z+H. 

The final vector X is thus composed from a number of  
X = [x1..xn, z1.., h1.., k1..] features.  
In the SF space linear discrimination is used (SVML),  
although other methods may find better solution. 

Only a few results are presented here (big table). 



SFM vs SVM 

SFM generalize SVM approach by explicitly building feature space: 
enhance your input space adding kernel features zi (X)=K(X;SVi) 

+ any other useful types of features. 

 

SFM advantages comparing to SVM: 

• Kernel-based SVM  SVML in explicitly constructed kernel 
space, allows for various feature selection methods, local kernel 
optimization.  

• Extend input + kernel space => improvement.  

• Linear discrimination on explicit representation of features  
= easy interpretation of SFM functions as combination of local 
similarity evaluations (biologically plausible). 



SFM vs SVM 

How to extend the feature space, creating SF space?  

• Use various kernels with various parameters.  

• Use global features obtained from various projections.  

• Use local features to handle exceptions. 

• Use feature selection to define optimal support  
feature space. 

Many algorithms may be used in SF space to generate the final 
solution.  

 

In the current version three types of features are used, but many 
extensions are possible.  



Results 
SVM vs SFM in the kernel space only 



Results: SFM in extended spaces 



Results: kNN in extended spaces 



Results: SSV in extended spaces  



Learning from others …  

Learn to transfer knowledge by extracting interesting features created by 
different systems. Ex. prototypes, combinations of features with thresholds …  

=> Universal Learning Machines. 

Classify all types of features – what type of info they extract? 
 

B1: Binary – unrestricted projections b1   
B2: Binary – complexes  b1 ᴧ b2 … ᴧ bk  

B3: Binary – restricted by distance   

R1: Line – original real features ri; non-linear thresholds for  “contrast  
    enhancement“ s(ribi);  intervals (k-sep).  

R4: Line – restricted by distance, original feature; thresholds; intervals (k-sep); 
more general 1D patterns.  

P1: Prototypes: general q-separability, weighted distance functions or 
specialized kernels.  

M1: Motifs, based on correlations between elements rather than input values. 
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SFM conclusions 

• SFM is focused on generation of new features, rather  
than optimization and improvement of classifiers. 

 

• SFM may be seen as mixture of experts; each expert is a simple 
model based on single feature: projection, localized projection, 
optimized projection, various kernel features. 

 

• For different data different types of features may be important 
=> no universal set of features, but easy to test and select. 



SFM conclusions 

• Kernel-based SVM is equivalent to the use of kernel features 
combined with LD. 

• Mixing different kernels and different types of features:  better 
feature space than single-kernel solution. 

• Complex data require decision borders with different 
complexity. SFM offers multiresolution (ex: different dispersions 
for every SV). 

• Kernel-based learning implicitly project data into high-
dimensional space, creating there flat decision borders and 
facilitating separability. 



Universal Learning Machines  

ULM is composed from two main modules:  

• feature constructors,  

• simple classifiers.  

In machine learning features are used to calculate: 

• linear combinations of feature values,  

• calculate distances (dissimilarites), scaled (includes selection) 

Is this sufficient?  

• No, non-linear functions of features carry information that cannot be 
easily recovered by CI methods.  

• Kernel approaches: linear solutions in the kernel space, implicitly add new 
features based on similarity K(X,SV).  

• ULM idea: create potentially useful, redundant set of futures. 
How? Learn what other models do well!  Implement transfer learning.  



Results 
(SFM in extended spaces) 

K=K(X,Xi)  Z=WX   H=[Z1,Z2] 



Dataset                                                   Classifier 

SVM (#SV) SSV (#Leafs) NB 

Australian 84.9±5.6 (203) 84.9±3.9 (4) 80.3±3.8 

ULM 86.8±5.3(166) 87.1±2.5(4) 85.5±3.4 

Features B1(2) + P1(3) B1(2) + R1(1) + P1(3) B1(2) 

Appendicitis 87.8±8.7 (31) 88.0±7.4 (4) 86.7±6.6 

ULM 91.4±8.2(18) 91.7±6.7(3) 91.4±8.2 

Features B1(2) B1(2) B1(2) 

Heart 82.1±6.7 (101) 76.8±9.6 (6) 84.2±6.1 

ULM 83.4±3.5(98) 79.2±6.3(6) 84.5±6.8 

Features Data + R1(3) Data + R1(3) Data + B1(2) 

Diabetes 77.0±4.9 (361) 73.6±3.4 (4) 75.3±4.7 

ULM 78.5±3.6(338) 75.0±3.3(3) 76.5±2.9 

Features Data + R1(3) + P1(4) B1(2) Data + B1(2) 

Wisconsin 96.6±1.6 (46) 95.2±1.5 (8) 96.0±1.5 

ULM 97.2±1.8(45) 97.4±1.6(2) 97.2±2.0 

Features Data + R1(1) + P1(4) R1(1) R1(1) 

Hypothyroid 94.1±0.6 (918) 99.7±0.5 (12) 41.3±8.3 

ULM 99.5±0.4(80) 99.6±0.4(8) 98.1±0.7 

Features Data + B1(2) Data + B1(2) Data + B1(2) 



ULM conclusions 

• Systematic explorations of features and transformations  
allows for discovery of simple models that more sophisticated  
learning systems may miss; results always improve and models simplify!  

• Some benchmark problems have been found rather trivial, and have been 
solved with a single binary feature, one constrained nominal feature, or one 
new feature constructed as a projection on a line connecting means of two 
classes – always try simplest methods!   

• Kernel-based features offer an attractive alternative to current kernel-based 
SVM approaches, offering multiresolution and adaptive regularization 
possibilities, combined with LDA or SVNT.  

• Analysis of images, multimedia streams or biosequences may  require even 
more sophisticated ways of constructing features starting from available 
input features. 

• Learn from others, not only on your own errors! 



Universal Learning Machines 



Meta-Learning 



T-based meta-learning 

To create successful meta-learning through search in the model space fine 
granulation of methods is needed, extracting info using support features, 
learning from others, knowledge  transfer and deep learning.  

Learn to compose, using complexity guided search, various transformations 
(neural or processing layers), for example:  
 

• Creation of new support features: linear, radial, cylindrical, restricted 
localized projections, binarized … feature selection or weighting. 

• Specialized transformations in a given field: text, bio, signal analysis, …. 

• Matching pursuit networks for signal decomposition, QPC index, PCA or ICA 
components, LDA, FDA, max. of mutual information etc.  

• Transfer learning, granular computing, learning from successes: discovering 
interesting higher-order patterns created by initial models of the data. 

• Stacked models: learning from the failures of other methods. 

• Schemes constraining search, learning from the history of previous runs at 
the meta-level.  



Real meta-learning! 

Search space of all possible models is too large to explore it exhaustively, 
design system architecture to support knowledge-based search. 

Meta-learning: learning how to learn, replace experts who search for best 
models making a lot of experiments. 

• Abstract view, uniform I/O, uniform results management. 

• Directed acyclic graphs (DAG) of boxes representing scheme 

• placeholders and particular models, interconnected through I/O. 

• Configuration level for meta-schemes, expanded at runtime level. 

An exercise in software engineering for data mining!  



Intemi, Intelligent Miner 

Meta-schemes: templates with placeholders.  

• May be nested; the role decided by the input/output types. 

• Machine learning generators based on meta-schemes. 

• Granulation level allows to create novel methods. 

• Complexity control: Length of the program/errors + log(time) 

• A unified meta-parameters description, defining the range of sensible 
values and the type of the parameter changes. 



Complex machines on vowel data 

Number on far left = 
final ranking.  
 
Gray bar =   
         accuracy  
 
Small bars (up-down)  
show estimation of:  
total complexity, 
time,  
memory. 
 
Numbers in the middle 
= process id  
(refer to models in the 
previous table).  



Summary 

1. Challenging data cannot be handled with existing DM tools.  

2. Visualization of hidden neuron’s shows that frequently perfect but non-
separable solutions are found despite base-rate outputs. 

3. Linear separability is not the best goal of learning, other targets that 
allow for easy handling of final non-linearities may work better. 

4. k-separability defines complexity classes for non-separable data.  

5. Similarity-based framework enables meta-learning as search in the 
model space, heterogeneous systems add fine granularity. 

6. Transformation-based learning shows the need for component-based 
approach to DM, discovery of simplest models and support features. 

7. SFM and ULM may do more than SVMs.  

8. Meta-learning should replace experts in automatically creating new 
optimal learning methods on demand. 
  

 Many things to finish … Can deep learning do the same?    





Soul or brain: what makes us human?  
Interdisciplinary Workshop with theologians,  
Toruń 19-21.10.2016 
 

Monthly international 
developmental seminars  
(2017): Infants, learning,  
and cognitive development 
 

Disorders  of consciousness  
17-21.09.2017  
 

Autism: science, therapies 
23.05.2017  
 

http://www.tkk.umk.pl/


Thank for 
synchronization  

of your neurons 

Google: W. Duch  

=> talks, papers, projects, lectures …  


